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www.weather.gov/hgx/hurricaneharvey

Hurricane Harvey (August 2017) 



www.pbs.org/newshour/hurricane-harvey-became-extreme



www.washingtonpost.com/hurricane-harvey-and-the-inevitable-question-of-climate-change



“How” is Houston growing? 

o where are farms and forests 

being converted to urban 

areas? 

o where are urban areas 

growing denser?

o how fast are these changes 

occurring?



Land cover change

• the complex result of a combination of resource scarcity, market 

opportunities, policy intervention, and changes in social organization 

and attitudes (Rindfuss, Walsh, Turner, Fox, & Mishra, 2004)



1. 

Annual land cover classes

2. 

Subannual percent impervious

Urbanization time series: 1997:2018



Urbanization time series: 1997:2018

1. 

Annual land cover classes



Temporal extent: 

21 years (1997-2017)

Temporal resolution: 

Annual

Thematic resolution: 

9 classes

Spatial resolution: 

30x30 m

Spatial extent: 

35,000 km2

Annual land cover class change

Hakkenberg et al. (2019).  Int. J. Remote Sens.
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Clouds, error, and 
contamination



3-7 images per year



Clouds, error, and contamination



Spatio-temporal filtering



NLCD agreement

Hakkenberg et al. (2019).  Int. J. Remote Sens.
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Accuracy Assessment



Fuzzy accuracy (multi-temporal independent validation)

Hakkenberg et al. (2019).  Int. J. Remote Sens.

Accuracy Assessment





Equivalent area 

developed in Houston 

from 1997 to 2017 

(2040km2 400km2)
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Urbanization and underlying socio-economic trends

Hakkenberg et al. (2019).  Int. J. Remote Sens.

periodicity

time lags



* Data from: NOAA’s Coastal Change Analysis Program (C-CAP) land cover



* Data from: NOAA’s Coastal Change Analysis Program (C-CAP) land cover

14% of all new development in wetlands
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Jurisdiction Portion of jurisdiction in FEMA 100yr Floodplain

1998

2016

Development in the FEMA 100yr Floodplain - Pearland



Jurisdiction Portion of jurisdiction in FEMA 100yr Floodplain
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Development in the FEMA 100yr Floodplain - Sugarland



Jurisdiction Portion of jurisdiction in FEMA 100yr Floodplain
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Development in the FEMA 100yr Floodplain - Greatwood



2. 

Subannual percent impervious

Urbanization time series: 1997:2018



Subannual continuous fields impervious fractional cover

Temporal extent: 

22 years (1997-2018)

Spatial resolution: 

30x30 m

Spatial extent: 

2720 km2

Temporal resolution: 

subannual (~3/year)

Thematic resolution: 

continuous impervious (0-100%)
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Automated training data subsampling

(1) multi-band stable sites 

(2) proportional allotment

(3) random stratified sampling
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Hakkenberg et al. (In Review). IEEE Geosci & Remote Sens.

Accuracy Assessment



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

NLCD

A
A

S
G

r

2001

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Quickbird

A
A

S
G

r

2005

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

NLCD

A
A

S
G

r

2006

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Quickbird

A
A

S
G

r

2007

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

NLCD

A
A

S
G

r

2011

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Quickbird

A
A

S
G

r

2013

5000 10000 15000
Frequency

2000 4000 6000 8000
Frequency

Hakkenberg et al. (In Revision). IEEE Geosci & Remote Sens.

Year adj-R2 RMSE MAE bias
NLCD 2001 0.82 0.14 0.09 0.01
NLCD 2006 0.77 0.16 0.11 0.02
NLCD 2011 0.77 0.16 0.11 -0.01
Quickbird 2005 0.72 0.15 0.11 -0.05
Quickbird 2007 0.80 0.14 0.11 0.03
Quickbird 2013 0.79 0.14 0.11 -0.01
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2. Discrete (urban classes) and continuous fields (% impervious)

3. Large spatial extents; multi-decadal, annual, and subannual

4. Higher-order spatio-temporal dynamics of urbanization

5. AASG R package
• Dannenberg, M.P., Hakkenberg, C.R.  and C. Song. (2016). Automatic Adaptive 

Signature Generalization (AASG) in R. DOI: 10.17632/s7c3vfr84w.1
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• kinder.rice.edu/urban-data-platform
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Each LCLU map has a methodological and temporal vintage which is 
sometimes called an “ontology” (Comber, Fisher, & Wadsworth, 2005b). 
Ontologies are explicit specifications of an abstract representation of the 
world (Gruber, 1993; Guarino, 1995) like a map. In an LCLU mapping context 
they reflect choices over spatial, spectral, and radiometric data resolutions 
as well as the number and type of LCLU classes of the data. No vintage (or 
ontology) is ever the same because of the many embedded processes and 
assumptions (Comber et al., 2005b). Comparing LCLU maps in a 
post‐classification change analysis is difficult (Fuller, Smith, & Devereux, 
2003; Tewkesbury, Comber, Tate, Lamb, & Fisher, 2015) because any 
differences between them will reflect artefactual differences in ontology 
(Comber, Fisher, & Wadsworth, 2004), errors, and actual differences on the 
ground.



Distribution of Landsat imagery


